Appendix VII Drainage Proposal

Drainage Appraisal

PROPOSED TEMPORARY PLACE OF RECREATION, SPORTS OR CULTURE WITH ANCILLARY FACILITIES FOR A PERIOD OF 5 YEARS, LOTS 2063 AND 2064 IN D.D. 106 AND ADJOINING GOVERNMENT LAND, KAM TIN, YUEN LONG, NEW TERRITORIES (FORMER SHEK WU SCHOOL)

Drainage Appraisal

September 2024

Drainage Appraisal

Table of Content

1.	Intro	oduction	1
	1.1	Background	1
	1.2	The Site	1
2.	Dev	elopment Proposal	2
	2.1	The Proposed Development	2
3.	Asse	essment Criteria	2
4.	Prop	posed Drainage System	5
5.	Con	clusion	5

List of Table

Table 1 - Key Development Parameters	2
Table 2– Design Return Periods under SDM	2

List of Figure

List of Appendix	
Figure 4B – Catchment Plan	
Figure 3B – Proposed Drainage System	
Figure 2 - Existing Drainage Plan	
Figure 1 – Site Location Plan	

- Appendix A Design Calculation and Checking for existing 1.2m Channel
- Appendix B Development Layout Plan
- Appendix C Reference Drawings for UChannel and Catchpit
- Appendix D Sections

Drainage Appraisal

1. Introduction

1.1 Background

- 1.1.1 The applicant seeks planning permission from the Town Planning Board (the Board) to use the Former Shek Wu School (Government Land (GL) in D.D. 106, Kam Tin, Yuen Long, New Territories) (the Site) for 'Proposed Temporary Social Welfare Facility with Ancillary Facilities for a Period of 5 Years' (Proposed Development).
- 1.1.2 This Drainage Proposal is to support the planning application for the proposed use.

1.2 The Site

- 1.2.1 The Application Site was former Shek Wu School located beside Kam Sheung Road. It has an area of about 1,940 m². The site is currently occupied by old school buildings with some greenery. The site location plan is shown in **Figure 1**.
- 1.2.2 The existing ground level of the site is approx. +12 mPD and it is intended to keep it unchanged. The site and the surrounding area are generally flat.
- 1.2.3 There is an existing approx. 1.2m width channel beside Kam Sheung Road. Existing Drainage Plan and Site Photo of existing channel are shown in **Figure 2** for reference.
- 1.2.4 Proposed Development Layout plan is shown in **Appendix B** for reference.

Drainage Appraisal

2. Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 1,940 m². The indicative development schedule is summarized in **Table 1** below for technical assessment purpose. Catchment Plan is shown in Figure 4.

Proposed Development		
Total Site Area (m ²)	1,940	
Paved Area (m ²)	1,940	
Assume all proposed site area as paved		
area for assessment purpose		

Table 1 - Key Development Parameters

3. Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this DIA. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2– Design Return Periods under SDM

3.1.2 The proposed village drainage system intended to collect runoff from the internal site and discharge to existing approx. 1m width channel at the south of the site. 1 in 10 years return period is adopted for the drainage design.

Drainage Appraisal

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the HKO Headquarters Rainfall Zone. Therefore, for 10 years return period, the following values are adopted.

а	=	485
b	=	3.11
С	=	0.397

(Corrigendum_No.1/2024)

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278$ CiA

where	Q_p	=	peak runoff in m ³ /s
	С	=	runoff coefficient (dimensionless)
	i	=	rainfall intensity in mm/hr
	А	=	catchment area in km ²

3. The run-off coefficient (C) of surface runoff are taken as follows:

•	Paved Area:	C = 0.95
•	Unpaved Area:	C = 0.35

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation:
$$v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$$

Where,

- V = velocity of the pipe flow (m/s)
- S_f = hydraulic gradient
- n = manning's coefficient
- R = hydraulic radius (m)
- 5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation:

$$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}}\right)$$

where,

=	velocity of the pipe flow (m/s)
=	hydraulic gradient
=	roughness value (m)
=	kinematics viscosity of fluid
=	pipe diameter (m)
=	hydraulic radius (m)
	= = = =

Drainage Appraisal

4. Proposed Drainage System

- 4.1.1 Proposed drainage system are designed for collection of runoff from the application site and to discharge to existing approx. 1.2m width channel beside Kam Sheung Road. The alignment, size and gradient of the proposed drains are shown in **Figure 3**. The catchment plan is shown in **Figure 4**.
- 4.1.2 The design calculations of proposed drains and checking of existing 1.2m channel are shown in **Appendix A**.
- 4.1.3 The reference standard drawings of drains are shown in **Appendix C**.

5. Conclusion

- 5.1.1 A drainage appraisal has been conducted for the Proposed Development. The surface runoff from the Application Site will be collected by the proposed drains and discharged to the existing channel beside Kam Sheung Road.
- 5.1.2 With the proposed drainage system, it is anticipated that there will be no significant drainage impact to the area after the implementation of the development.

- End of Text -

FIGURES

	Combined Manhole	
ъ	Overflow (Combined)	
—	Pipe (Combined)	
	Interface Valve Chamber	
	Sewer Manhole	
-	Oil / Petrol Interceptor	
D	Overflow (Sewer)	
-	Pipe (Sewer)	

н	Tapping Point (Sewer)	н	Tapping Point (
	Sewer Terminal Manhole	٥	Storm Water Te
•	Catchpit	<i>7222</i>	Tunnel Protect
↦	Inlet	<i>7223</i>	Tunnel Protect
0	Storm Water Manhole		Tunnel / Box Cu
+-(Outlet	8000	Tunnel / Box Cu
—	Pipe (Storm)		
•	Sand Trap		EXISTING CHA

н	Tapping Point (Storm)		
•	Storm Water Terminal Manhole		
7222	Tunnel Protection Zone (100m / 200m)		
7 <i>223</i>	Tunnel Protection Zone (General Range)		
	Tunnel / Box Culvert (Sewer)		
1000	Tunnel / Box Culvert (Storm)		

N. 1 IN 150	
1	
ֆ	PROJECT. PROPOSED TEMPORARY
1	PLACE OF RECREATION,
	WITH ANCILLARY
X	FACILITIES FOR A PERIOD
	ADJOINING GOVERNMENT
$\tilde{\mathcal{N}}$	LAND, KAM TIN, YUEN
	LONG, NEW TERRITORIES (
\/%	SCHOOL)
1/	
。/ / //用)稱	5
13.0 +	
1	
Invert Level Length	-
S D/S m	4
26 11.17 13.10	
1711.0517.800510.8727.40	-
87 10.79 11.60 79 10.74 8.20	-
74 10.64 14.80	1
64 10.50 21.80	1
40 11.28 18.2	
21 11.16 8.3	1
1611.0910.60911.0012.8	
00 10.99 2.4 99 10.79 30.1	4
	1
HANNEL	
	REV DESCRIPTION DATE
	PROPOSED DRAINAGE
	SYSTEM
	SYSTEM
	SYSTEM
	SYSTEM DRAWING NUMBER FIGURE 3B

Appendix

U Channel 1 (ZONE A1 + B1	<u>+ B2)</u>					
Runoff Estimation						
Design Return Period		1 in	10	years		
Paved Area	1940 + 1892 + 841=		4673	(m2)		
Unpaved Area			0	(m2)		$i = \frac{a}{a}$
Total Equivalent Area	2898 x 0.95 + 0 x 0.35 =		4439	(m2)		$(t_d + b)^c$
Rainfall Intensity, I *			240	mm/hr		
Design Discharge Rate, Q	0.278 x 4439 x 240 / 1000000 =		0.296	m3/s		
U Channel						
Channel Size			525	(mm)		
Gradient		1 in	150			
Area	$\pi \times 0.53^2 / 8 + 0.53 \times 0.53 / 2 =$		0.246	(m2)		
Wetted Perimeter	$\pi \times 0.53 / 2 + 0.53 / 2 \times 2 =$		1.350	(m)		
R R	0.246 / 1.35 =		0.182	(m)		
Velocity $v = \frac{n}{n} R^{2} S_{f}^{2}$			1.64	m/s		where n = 0.016 (Concrete Channel in Fair Co
Capacity			0.404	m3/s		
Utilitization	0.000 / 0.404					
	0.296 / 0.404	=	73.24	%	OK	(less than 90%, for 10% siltation allowance)
Checking for Existing 1.2m	Channel (Zone [A1 + B1 + B2]	= + C1 <u>)</u>	73.24	%	ОК	(less than 90%, for 10% siltation allowance)
Checking for Existing 1.2m	Channel (Zone [A1 + B1 + B2]	₌ + C1)	73.24	%	OK	(less than 90%, for 10% siltation allowance)
Checking for Existing 1.2m Runoff Estimation	Channel (Zone [A1 + B1 + B2]	= + C1) 1 in	73.24 10	% years	OK	(less than 90%, for 10% siltation allowance)
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area	Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 =	= + C1) 1 in	73.24 10 8229	% years (m2)	ок	(less than 90%, for 10% siltation allowance)
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area	<u>Channel (Zone [A1 + B1 + B2]</u> 4673 + 3556 x 1 =	= + C1) 1 in	10 8229 0	% years (m2) (m2)	ОК	(less than 90%, for 10% siltation allowance)
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area	0.296 7 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 =	= + C1) 1 in	10 8229 0 7818	% years (m2) (m2) (m2)	ОК	(less than 90%, for 10% siltation allowance) • $i = \frac{a}{(t_{+} + b)^{c}}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I *	4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 =	= + C1) 1 in	10 8229 0 7818 240	% years (m2) (m2) (m2) mm/hr	ОК	(less than 90%, for 10% siltation allowance) • $i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1 * Design Discharge Rate, Q	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in	10 8229 0 7818 240 0.521	% (m2) (m2) (m2) mm/hr m3/s	ОК	(less than 90%, for 10% siltation allowance) $\star i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1 * Design Discharge Rate, Q	4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in	10 8229 0 7818 240 0.521	% (m2) (m2) (m2) mm/hr m3/s	ОК	(less than 90%, for 10% siltation allowance) * $i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q U Channel	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in	10 8229 0 7818 240 0.521	% (m2) (m2) (m2) (m2) mm/hr m3/s	ОК	(less than 90%, for 10% siltation allowance) $\star i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q UChannel Channel Size	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in	10 8229 0 7818 240 0.521	% years (m2) (m2) (m2) mm/hr m3/s	OK	(less than 90%, for 10% siltation allowance) • $i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in	10 8229 0 7818 240 0.521 1200 200	% years (m2) (m2) (m2) mm/hr m3/s (mm)	ОК	(less than 90%, for 10% siltation allowance) • $i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient Velocity	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in 1 in	10 8229 0 7818 240 0.521 1200 200 2.47	% years (m2) (m2) (m2) mm/hr m3/s (mm) m/s	OK	(less than 90%, for 10% siltation allowance) • $i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in 1 in	10 8229 0 7818 240 0.521 1200 200 2.47 3.169	% years (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	OK	(less than 90%, for 10% siltation allowance) $\star i = \frac{a}{(t_d + b)^c}$
Checking for Existing 1.2m Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q UChannel Channel Size Gradient Velocity Capacity	0.296 / 0.404 Channel (Zone [A1 + B1 + B2] 4673 + 3556 x 1 = 8229 x 0.95 + 0 x 0.35 = 0.278 x 0 x 240 / 1000000 =	= + C1) 1 in 1 in	10 8229 0 7818 240 0.521 1200 2.47 3.169	% years (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	OK	(less than 90%, for 10% siltation allowance) • $i = \frac{a}{(t_d + b)^c}$

Time of Concentration for Catchement from B1 to the Site

Catchment	Flow Distance	Highest Level	Lowest Level	Gradient (per 100m) = (H1-H2)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tc = to + tf
Α	L			Н		
(m2)	(m)	(mPD)	(mPD)		(min)	(min)
1892	32.5	12.1	12	0.308	2.80	2.80

Appendix C - Reference Drawings

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- 11. FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- 12. SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

	A	MINOR AMENDMENT.	Original Signed 04.2016	
	REF.	FORMER DRG. NO. C2406J. REVISION	Original Signed 03.2015 SIGNATURE DATE	
CATCHPIT WITH TRAP	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMEN			
(SHEET 2 OF 2)	SCAL DATE	E 1:20 JAN 1991	drawing no. C2406 /2A	
卓越工程 建設香港	V	/e Engineer Hong	Kong's Development	

